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Antalek and Windig recently presented a fast method to re- A Å CPT [1]
solve a series of NMR mixture spectra, where the contribution

B Å CaPT . [2]of the components varies with a decaying exponential [B. An-
talek and W. Windig, J. Am. Chem. Soc. 118, 10,331–10,332

A and B are data matrices of size s 1 £; s is the number(1996) ; W. Windig and B. Antalek, Chemom. Intell. Lab. Syst.
of spectra and £ is the number of variables (i.e., real data37, 241– 254 ( 1997 ) ] . The method was called DECRA (direct
points in each spectrum). C (size s 1 n) and P (size £exponential curve resolution algorithm) . In this paper DECRA
1 n) are the concentration and pure spectra matrices of nwill be applied to two series of magnetic resonance images.

The signal of one series is based upon T2 relaxation, and the components. The matrix a is a diagonal matrix (size n 1
other is based upon T1 relaxation. In order to evaluate the n) , of which all the elements have a different value. In these
technique, the magnetic resonance images of a phantom where two data sets the pure spectra and the concentrations are
used. A transformation is introduced to enable the application proportional; they only differ by a certain scaling factor as
of DECRA to a T 1 series of magnetic resonance images. A defined by the diagonal matrix a.
separate paper in this issue will describe the application of the Kubista showed that it is possible to resolve mixtures of
techniques to magnetic resonance images of the human brain.

two data sets unambiguously (3, 4) . Booksh and Kowalski
q 1998 Academic Press

showed that Kubista’s method can be expressed in terms ofKey Words: MRI; multivariate image analysis; exponentials; T1
GRAM, which eliminates some problems and restrictionsrelaxation; T2 relaxation.
with Kubista’s method (5) . For details about the GRAM
algorithm, see (6, 7) .

Traditionally, the two data sets have been obtained byINTRODUCTION
analyzing two samples with the relation just described,

Antalek and Windig recently showed that a series of NMR or by applying two different experiments to one sample
spectra where the contribution of the components varies with where the different experiments create the proportional
a decaying exponential profile can be resolved fast and accu- relation. In both cases, two experiments are performed.
rately. The newly developed method is called DECRA (di- Exponential profiles, however, have a property that
rect exponential curve resolution algorithm), and it is based makes it possible to apply GRAM to a single experimen-
on the general rank annihilation method (GRAM) (1, 2) . tal data set by simply using two different parts of the
The algorithm assumes the presence of two mixture data data set. In order to demonstrate the property of decaying
sets with a proportional behavior between the elements of exponentials involved, an example of two exponential
the set. The spectra of the pure components are identical decays is given in Table 1. D represents a data set of
and the concentrations are identical, but they differ with a which the exponentially decaying concentration profiles
scale factor, which is different for each of the components. of two components (n Å 2 ) are given in the first and
In mathematical terms, this relation can be expressed as second column under D. The data in the first column
follows: have a faster decay rate than the data in the second col-

umn. Data set D is split into two data sets A and B. The
data set A is created using the first three ‘‘spectra’’ of1 To whom correspondence should be addressed. Fax: (716) 477-7781.
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TABLE 1
Representative Signal Decay Data

D A B

Component 1 Component 2 Component 1 Component 2 Component 1 Component 2

27 8 27 8 9 4
9 4 9 4 3 2
3 2 3 2 1 1
1 1

data set D, and data set B is created by using the last much larger than the echo time TE, the signal S of a
component i is described bythree spectra of data set D. For both A and B, s Å 3 and

£ Å 2. Because of the exponential character of the pro-
files, the first column of A is a constant (3 ) times the Si } ∑

i

ri e
0TE/(T2) i (1 0 e0TR / (T1) i ) , [4]

first column of column B, and the second column of A
is a constant (2 ) times the second column of B. As a
consequence, the data sets A and B fulfill the require-

where r is the spin density. Varying TE and keeping TRments as expressed in Eqs. [1] and [2 ] . In this case the
constant or vice versa will result in a series that dependsmatrix a in Eq. [ 2 ] contains 0.33 and 0.50 as diagonal
upon T2 or T1 , respectively. Because of the chemical natureelements. This means that in the case of exponentially
and physical environments of the 1H nuclei (described bydecaying functions, one can use two different parts of
their relaxation behavior) a series of these T2 (or T1) imagesthe data set to create the two data sets necessary to apply
can be considered as a mixture of images. Each componentKubista’s method or GRAM.
of the mixture presents an image defined by a single expo-
nential with time constant T2 (or T1) . As a consequence, itPGSE NMR Spectra
is possible to extract the pure T2 (or T1) images. The analogy
between the spectra and the images is summarized next.DECRA was applied to a series of pulsed gradient spin

echo (PGSE) NMR spectra of which the exponential decay The PGSE NMR data set comprises a series of mixture
spectra of chemical components characterized by differentin the series of spectra is based on the diffusivities of the

different components (1, 2) . Using the standard spin echo exponential decays that depend on diffusivities. DECRA cal-
culates the spectra of the pure chemical components andversion of the PGSE NMR experiment (8) the relationship

of the acquired signal S from component i to the diffusion their contributions (concentrations) in the original spectra.
The profiles formed by the contributions of a single chemicalcoefficient D of component i is described by
component over the whole series of spectra are exponential.
From the derived exponentials the diffusivities are obtained.Si } e0Di (ggd )2(D0d /3) . [3]

The magnetic resonance image data set is comprised of a
series of mixture images of 1H environments characterizedg is the gyromagnetic ratio and D and d are timing parame-
by different exponential decays that depend on spin–spinters in the pulse sequence. Spectra are collected by varying
(or spin–lattice) interactions. DECRA calculates the imagesthe magnetic field gradient g . The spectra of the pure compo-
of the pure 1H environments and their contributions (concen-nents and their contributions (‘‘concentrations’’) in the orig-
trations) in the original images. The profiles formed by theinal mixture spectra are extracted. The diffusivities derived
contributions of a single 1H environment over the wholefrom the exponentials were accurate.
series of images are exponential. From the derived exponen-
tials the T2 (or T1) values are obtained.Magnetic Resonance Images

The analysis of a series of images with interimage varia-
tion is the subject known as multivariate image analysisThe exponential profiles necessary to apply DECRA

are also present in a series of magnetic resonance (MR) (MIA) (9) . Using principal component analysis (PCA), it
is generally possible to reduce a series of related imagesimages whose signal depends upon the spin–spin relax-

ation T 2 or the spin– lattice relaxation T 1 ( for which a to a small number of images that contain all the original
information. Since the images resulting from PCA are basedtransformation is needed and will be introduced later ) .

Using the standard single-slice, single-echo, spin-echo on mathematical criteria, they may exhibit positive and nega-
tive intensities. An offset needs to be added to display thesequence and assuming that the repetition time TR is
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PCA results as images. Examples have been shown for satel- MATERIALS AND METHODS
lite images (10–12) and MR images (13–15) . Multivariate

Algorithmanalysis is normally used in cases where every object ( in
our case an image) is an array. A series of objects forms a This section will show the algorithm used for the analysis
matrix, which is a two-way array. In MIA the object is an of the data presented in this paper. It is based on the paper
image, and a series of images forms a three-way array. In of Sanchez and Kowalski (6) .
order to be able to apply PCA (or a technique such as DE- Equations [1] and [2] can be rewritten as
CRA), each image is reorganized into an array by appending
the rows or columns of pixels. C Å A(PT )/ [5]

The pixel intensities of the two or three PCA images
Ca Å B(PT )/ , [6]can be plotted against each other, and clusters in such a

presentation can be selected to enhance certain features in
where (PT )/ represents the pseudoinverse of the matrix PT .the images. This process is called segmentation (9) . Further-

Post-multiplying the left and right side of Eq. [5] by amore, regression of the extracted images can be applied to
results incertain highlighted parts of the images in order to enhance,

for example, certain tissue types in MR images (15) .
Ca Å A(PT )/a. [7]Instead of the mathematically determined images resulting

from PCA, it is also possible to plot the pixel intensities of
Combining Eqs. [6] and [7] results inmore ‘‘natural’’ images and obtain segmentation. This is

done using an iterative fitting procedure to a single exponen-
A(PT )/a Å B(PT )/ . [8]tial function on registered pixels within the entire image

series. This is the approach of Fletcher et al. (16) , who used
This can be rewritten asT1 , T2 (derived from the fitted exponentials) and spin density

(r) weighted images.
This paper shows the application of DECRA to both a AZa Å BZ , [9]

series of images that are related to T2 and a series of images
that are related to T1 . A transformation of a T1 series of where
images will be introduced that makes it possible to apply
DECRA. An important difference between Geladi’s method Z Å (PT )/ . [10]
(9) and DECRA is that Geladi’s method extracts images
that are abstract, because of the use of PCA, whereas the The expression in Eq. [9] is known as the generalized
extracted images of DECRA relate to certain 1H environ- eigenvector problem, where Z contains the eigenvectors and
ments defined by their T1 or T2 behavior. In order to show a contains the eigenvalues. The decay values can be calcu-
the feasibility of the method, phantom images will be used, lated directly from the eigenvalues. In order to solve the
so that the information provided by DECRA can be com- generalized eigenvector problem, the matrices A and B need
pared with the known composition. A separate paper will to be square. This can be achieved by projecting A and B
describe applications of DECRA to T1 and T2 images of the in a common PCA space (2) .

In order to be able to apply the algorithm to the images,human brain (17) .

FIG. 1. A schematic representation of the phantom used for this study.
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FIG. 2. (a) The first image of the T2 series. It is basically a top view of the phantom in Fig. 1. An air bubble can be observed at the pixel coordinates
of approx. 160, 40. (b) The last image of the T2 series.

the images were reorganized into arrays, and the arrays into This function does not show the proportional behavior of
the exponential as described in Table 1, and the DECRAa data matrix. For example, a series of 10 256 1 256 images

results in a 10 1 65536 data matrix. technique cannot be applied. If the term a1 is known, it
would be simple to subtract this constant. Because a1 is
not known, a subtraction procedure is not a viable option.T1 Transformation
However, a simple mathematical procedure can be applied

For this section, Eq. [4] , with constant TE, is simplified to make it possible to use DECRA. Equation [11] can be
as follows: rewritten as

a1(e 0x 0 e0bx) . [12]a1(1 0 e0bx) . [11]
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FIG. 3. (a) The resolved component of MnCl2 compartment and (b) the resolved component of the NiCl2 compartment.

This shows that the expression basically is a linear combina- were relatively noisy. By applying singular value decompo-
sition to the data set prior to adding the column with constanttion of two exponential functions. This ‘‘data set’’ cannot

be resolved using DECRA, because we have two exponen- values, and reproducing the data set using ncom singular
values, where ncom represents the number of componentstials in a data set of rank 1 (i.e., the number of linearly

independent components is 1) . However, since one of the in the data set (2 for the phantom), the noise was reduced
significantly.exponentials is known, e 0x , it is possible to add this as a

new component to the data set in the form of an extra vari-
able. This can be extended to complete data sets of T1 charac- Imaging
ter and basically consists of adding a column to the data set
where all the elements have a constant value. Simulated data A simple phantom was constructed to test DECRA and

shown in Fig. 1. It consists of a plastic [PVC, poly(vinylsets were used to confirm this surprisingly simple procedure.
In practice, it appeared that the resolved data of T1 images chloride)] box having the dimensions 18 cm 1 10 cm 1 1
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FIG. 4. The reconstructed first image of the T2 series.

cm, and containing two compartments separated by a thin quired with a fixed TE of 15 ms and a TR starting at 200
ms and incremented by 200 ms.plastic (PVC) sheet of thickness, 0.18 cm. The compart-

ments, therefore, formed two wedge-shaped spaces. The
Data Analysisangle of the wedge is 6.27. These spaces were filled with

water that contained a specific amount of paramagnetic salt. For the data analysis MATLAB software was used (The
One space contained 0.5 mM MnCl2 and the other 8 mM MathWorks, Inc., Natich, MA 01760). The computer con-
NiCl2 . These concentrations were chosen to provide water figuration is a Pentium, 90 MHz, 64 MB RAM.
T2 values of near 30 and 150 ms, respectively. The plastic
separation sheet was glued to completely seal one compart-

RESULTS AND DISCUSSIONment from the other. The solution containing the MnCl2 salt
will be designated component A and that containing the T2 Image Series
NiCl2 salt component B. Component A will be depicted
toward the left side of the figures. Figure 2 shows the first and last image of the T2 image

series. The top of each image in Fig. 2 shows the contributionA GE Signa 1.5-T whole body imager employing a stan-
dard spin-echo pulse sequence and standard birdcage RF of only the compartment with MnCl2 , and the bottom of

each image shows the contribution of only the compartmentcoil was used for all of the image acquisition. For the phan-
tom 15, 256 1 256 pixel, images were acquired of a 5-mm with NiCl2 . In the middle region the signal is a mixture of

the two compartments. The intensity is lower in the middlethick plane passing through the long axes of the object and
parallel to the 18 cm 1 10 cm surfaces. The image plane is because of the presence of the divider. Comparing Figs. 2a

and 2b, it is clear that the MnCl2 compartment has the fastestrepresented in Fig. 1 with a dashed line. The parameter, TE,
in the spin echo pulse sequence (see Eq. [1]) was varied decay rate. The data set was split into two parts for DECRA:

images 1–14 for the first part and images 2–15 for thestarting at 15 milliseconds (ms) and incremented by 15 ms
for each image. TR was a constant of 2000 ms and the field second part. The calculations take 40 s. The output of DE-

CRA (after reorganizing the output into images) using twoof view was 20 cm. Varying TE resulted in a dependence
in signal intensity for each image based upon T2 relaxation. components is given in Fig. 3. The two components clearly

describe the phantom structure. In order to verify that usingThe phantom was constructed so that one may obtain, using
a 5-mm slice thickness, an image with three general regions, two components describes the original data set appropriately,

the first image was reconstructed from the resolved results.two regions where the signal represents the pure decay be-
havior of each component (close to the ends) and a middle The reconstructed image in Fig. 4 is indistinguishable from

the original image in Fig. 2a.region which represents a weighted sum of the two.
For the T1 image series the same experimental procedure When using three components for DECRA, the extra com-

ponent extracted clearly represents noise, which is similarand parameters were used, except that 10 images were ac-
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FIG. 6. The resolved image profiles (dashed lines) for the first image,
the sum of the resolved image profiles (solid line) , and the original image
profile (dashed line; cannot be distinguished from solid line) . In order to
see the relation with the original sample, the phantom is reconstructed from
the image profiles.

FIG. 5. (a) Image profiles of the T2 series; (b) standard deviation of
the image profiles in (a) .

In order to show the relation of the resolved image profiles
with the phantom, the phantom was reconstructed from the

to the experience with spectra (2) : The contribution profile data resolved image profiles; see Fig. 6.
was negative and the image, dominated by noise, had nega- The contribution profiles of the T2 phantom are shown in
tive intensities which were in the same range as the positive Fig. 7. The contributions from the first part of the split data
intensities. This clearly indicates that the data set has two (images 1–14) set is plotted using 1’s. The contributions
components. for the second part of the split data set ( images 2–15) is

In order to judge the images more objectively, ‘‘image calculated by multiplying the contribution profile of the first
profiles’’ are plotted. An image profile is obtained by averag- data set by its eigenvalue and are plotted using h’s. Because
ing the columns of an image between x pixel positions 77 of the way the data set was split, the two profiles have an
and 165. The original data can now be plotted in a single overlapping, proportional profile. It is clear from the plots
figure (see Fig. 5a) . In order to check the quality of the data in Fig. 7 that the assumption of proportionality was correct.
set, the standard deviation image profile of the original data The solid line in this figure is calculated from the eigenvalues
set is given in Fig. 5b. As expected, the areas in the phantom and shows excellent fit. The T2 values obtained from the
where the pure components can be observed (approximately eigenvalues are 28.2 ms for MnCl2 ( target value 29.6 ms)
from pixel position 20 to 100 and from pixel position 200 and 137.7 ms for NiCl2 ( target value 150 ms).
to 240) is horizontal. The image profiles in Fig. 5 show a The high quality of these results indicate that fewer images
dip in intensities between pixel positions 100 and 200, which may produce similar results. It is possible to use only three
is due to the thickness of the screen that separates the two images (the minimum required for the algorithm) and still
compartments, and which gives no signal.

In Fig. 6, the image profiles of the two resolved compo-
nents are given. These image profiles are scaled to reproduce
the first image. The dashed line that increases between pixel
positions 125 and 200 represents the NiCl2 compartment of
the phantom, and the dashed line that decreases between
pixel positions 100 and 175 represents the MnCl2 compart-
ment of the phantom. The sum of the two image profiles is
represented by a solid line. In order to show how well the
original image has been reproduced, the image profile of
image 1 is also given with a dashed line. Because of the
high overlap, it cannot be distinguished from the sum of the FIG. 7. The contribution profiles of the faster decaying MnCl2 compart-

ment and the slower decaying NiCl2 compartment.two resolved image profiles.
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FIG. 8. The resolved image profiles (dashed lines) for the first image,
the sum of the resolved image profiles (solid line) , and the original image
profile (dashed line; cannot be distinguished from solid line) using only
three images.

obtain the correct results (see Fig. 8 and 9). The calculated
T2 values are 29.0 ms for MnCl2 ( target value 29.6 ms) and
136.9 ms for NiCl2 ( target value 150.0 ms). The calculation
time was less than 3.5 s.

T1 Image Series

The image profiles of the T1 image series and its standard FIG. 10. (a) Image profiles of the T1 series; (b) standard deviation of
the image profiles in (a) .deviation image profile are shown in Fig. 10. The standard

deviation image profile shows that the pure regions for each
of the compartments (pixel positions 15–77 and pixel posi-

analysis (after ignoring the third introduced component) are
tions 175–240) are not horizontal as in the standard devia-

shown in Fig. 11. The calculations took 45 s. Deviations
tion image profile of the T2 images in Fig. 5, although the

from the ideal behavior can be observed, which is not so
standard deviation values in each of the pure regions should

surprising, considering the deviations in the original data
be constant. The intensities are increasing toward the screen

set. Nevertheless, the resolved image profiles are close to
that separates the two compartments. Furthermore, the stan-

the expected profiles. Despite the deviations, the sum of the
dard deviation image profile of the T1 series is less smooth

resolved profiles, scaled to reconstruct the 10th image, again
than of the T2 series in Fig. 5, which indicates a higher noise

cannot be discriminated from the original image profile.
level.

Selecting an extra component in DECRA resulted in an
In order to resolve the T1 data set, a column with constant

image and corresponding contribution profile that were dom-
values was added to the data set. This results in an extra

inated by noise. This result shows clearly that the proper
image, which can be ignored. In order to obtain the contribu-

number of components is two.
tion profiles from the images with the original data set, the

Figure 12 shows the resolved contribution profiles, which
resolved images were regressed against the original data set,

show the expected exponential behavior. The T1 values
similar to Eq. [3] .

derived from the eigenvalues were 157.25 ms for NiCl2The data set was split into two parts: images 1–9 and
( target value: 159 ms) and 304.59 ms for MnCl2 ( target

images 2–10. The two images resulting from the DECRA
value: 319 ms) .

FIG. 11. The resolved image profiles (dashed lines) for the first image,FIG. 9. The contribution profiles of the faster decaying MnCl2 compart-
ment and the slower decaying NiCl2 compartment. Only three images are the sum of the resolved image profiles (solid line) , and the original image

profile (dashed line; cannot be distinguished from solid line) .used in the analysis.
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Further studies will include a further optimization of the T1

experiment and a systematic study of how other algorithms
for resolving exponential profiles compare with DECRA.

ACKNOWLEDGMENT

The authors thank Dr. Saara M. Totterman, Director of the Magnetic
Resonance Imaging Center at the University of Rochester Medical Center,
for providing imaging time for this study.

FIG. 12. The contribution profiles of the slower recovering compart- REFERENCES
ment and the faster recovering NiCl2 compartment.

1. B. Antalek and W. Windig, J. Am. Chem. Soc. 118, 10,331–10,332
(1996).

2. W. Windig and B. Antalek, Chemom. Intell. Lab. Syst. 37, 241–254It appeared that the reduction of the number of images to
(1997).

obtain correct results for this T1 series was not as drastic as
3. M. Kubista, Chemom. Intell. Lab. Syst. 7, 273–279 (1990).

for the T2 series. The minimum number of images to obtain
4. I. Scarminio and M. Kubista, Anal. Chem. 65, 409–416 (1993).

correct results is five (instead of three for the T2 series) .
5. K. S. Booksh and B. R. Kowalski, J. Chemom. 8, 287–292 (1994).

Because of the problems that can be observed in the original
6. E. Sanchez and B. R. Kowalski, Anal. Chem. 58, 496–499 (1988).

T1 data, more experiments are necessary for optimization.
7. B. Wilson, E. Sanchez, and B. R. Kowalski, J. Chemom. 3, 493–

498 (1989).
CONCLUSIONS 8. E. O. Stejskal and J. E. Tanner, J. Chem. Phys. 42, 288–292

(1965).
It was shown that T2 images can be resolved successfully 9. P. Geladi and H. Grahn, ‘‘Multivariate Image Analysis,’’ Wiley, New

using the DECRA approach in 40 s. Using the minimum York (1996).
number of three images required for the algorithm, correct 10. K. Esbensen and P. Geladi, Chemom. Intell. Lab. Syst. 7, 67–86
results were obtained in 3.5 s. Since MATLAB is an inter- (1989).

preter, it can be expected that a compiled version of the 11. H. Grahn, N. M. Szeverenyi, M. W. Roggenbuck, and P. Geladi,
Chemom. Intell. Lab. Syst. 7, 87–93 (1989).algorithm will be significantly faster. In order to resolve a

12. P. Geladi and K. Esbensen, J. Chemom. 5, 97–111 (1991).T1 series of images, a simple transformation was necessary.
13. P. Geladi, H. Isaksson, L. Lindqvist, S. Wold, and K. Esbensen,The transformed T1 series of images could be resolved suc-

Chemom. Intell. Lab. Syst. 5, 209–220 (1989).cessfully using the DECRA approach, although deviations
14. H. F. Grahn, N. M. Szeverenyi, M. W. Roggenbuck, F. Delaglio, andfrom the ideal behavior could be observed in the original

P. Geladi, Chemom. Intell. Lab. Syst. 5, 311–322 (1989).
data, which also affected the resolved results. The analysis
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